Current Auroral Oval [+30min]

Oval (+30min)


Image should be used as a guide only, it is based on predicted geomagnetic activity. Northern Lights may or may not be visible.
Current Auroral Oval [+30min]

Updating the image every 120 seconds

The OVATION Aurora Forecast Model shows the intensity and location of the aurora predicted for the time shown at the top of the map. This probability forecast is based on current solar wind conditions measured at L1, but using a fixed 30-minute delay time between L1 and Earth. A 30-minute delay corresponds to approximately 800 km/s solar wind speed as might be encountered during geomagnetic storming conditions. In reality, delay times vary from less than 30 minutes to an hour or so for average solar wind conditions.

The sunlit side of Earth is indicated by the lighter blue of the ocean and the lighter color of the continents. The day-night line, or terminator, is shown as a region that goes from light to dark. The lighter edge is where the sun is just at the horizon. The darker edge is where the sun is 12 degrees beLow the horizon. Note that the aurora will not be visible during daylight hours; however, the aurora can often be observed within an hour before sunrise or after sunset. The red line at about 1000 km equatorward of the brightest aurora indicates how far away viewers on the ground might see the aurora assuming good viewing conditions.

The OVATION (Oval Variation, Assessment, Tracking, Intensity, and Online Nowcasting) model is an empirical model of the intensity of the aurora developed at the Johns Hopkins University, Applied Physics Lab by Patrick Newell and co-workers. The model uses solar wind and interplanetary magnetic field (IMF) conditions at the L1 point, upstream of Earth towards the sun, as inputs. The model produces an estimate of the intensity of the auroral energy at locations on Earth. For this product, it is assumed that there is a linear relationship between intensity of the aurora and viewing probability. This relationship was validated by comparison with data from the Ultraviolet imager (UVI) instrument on the NASA Polar satellite. During intense solar energetic proton events (SPEs), the solar wind High-energy proton levels can be so large that they contaminate the ACE solar wind velocity and density measurements used to drive this model. In those instances, an alternative estimate of the solar wind forcing, based on the work of Machol et al., (Space Weather Journal, DOI: 10.1992/swe.20070, 2013) is used as input to the OVATION model.

Acknowledgement
swpc.noaa.gov

Nowcast


Image should be used as a guide only, it is based on predicted geomagnetic activity. Northern Lights may or may not be visible.

Updating the image every 120 seconds

The Nowcast maps are generated by OVATION Prime – a new-generation precipitation model (Newell et al., 2010) driven by an optimized solar wind coupling function (Newell et al., 2007). The model includes seasonal variation and separates different types of auroras – monoenergetic, wave, diffuse and ion. In these maps all types are summed together – Electrons + Ions: 10Re above Earth.

Acknowledgement
iswa.gsfc.nasa.gov & sol24.net 

SSUSI


Image should be used as a guide only, it is based on predicted geomagnetic activity. Northern Lights may or may not be visible.

Updating the image every 120 seconds

SSUSI remotely senses the physical and chemical processes in the Earth’s upper atmosphere. Measurements are made from the extreme ultraviolet (EUV) to the far ultraviolet (FUV) over the wavelength range of 80 nm to 170 nm, with 1.8 nm resolution. The DMSP satellites are launched in near-polar, sun-synchronous orbits at an altitude of approximately 850 km.

Acknowledgement
ssusi.jhuapl.edu & sol24.net

CTIPe (Experimental)


Image should be used as a guide only, it is based on predicted geomagnetic activity. Northern Lights may or may not be visible.



Updating the image every 120 seconds

The plot illustrates the height integrated electron density (TECU, 1 TECU = 1.e16 electrons/square meter) also called Vertical Total Electron Content (VTEC), vs latitude (-90 to 90 deg) and longitude (0 – 360 deg) from the Coupled Thermosphere Ionosphere Plasmasphere Electrodynamics Model (CTIPe). CTIPe is a state of the art research tool used at the Space Weather Prediction Center to study thermosphere-ionosphere phenomena in order to develop nowcasting and forecasting algorithms for space weather. The objectives are to understand and quantify the importance of the upper-atmospheric mechanisms that affect human activities and to develop new monitoring and predicting techniques.

Conditions in the ionosphere have a dramatic effect on the accuracy of Global Navigation Satellite Systems (GNSS). Geomagnetic storms can produce large gradients in TEC and the gradients can move making GNSS positioning difficult or impossible at times. The Coupled Thermosphere Ionosphere Plasmasphere Electrodynamics Model (CTIPe) model is a large numerical code that runs about 30 minutes ahead of real-time based on Advanced Composition Explorer (ACE) measurements and has the potential to forecast the state of the thermosphere/ionosphere system, including TEC variability. The model is run and the results are updated every 10 minutes, about 30 minutes ahead of real-time.

The Coupled Thermosphere Ionosphere Plasmasphere Electrodynamics (CTIPe) model is a non-linear, coupled thermosphere-ionosphere-plasmasphere physically based numerical code that includes a self-consistent electrodynamics scheme for the computation of dynamo electric fields. The model consists of four distinct components which run concurrently and are fully coupled. Included are a global thermosphere, a high-latitude ionosphere, a mid and low-latitude ionosphere/plasmasphere and an electrodynamical calculation of the global dynamo electric field. The thermosphere model was originally developed by Fuller-Rowell (Fuller-Rowell and Rees, [1980], Rees et al., [1980]) and is fully described in the PhD thesis of Fuller-Rowell [1981]. The high-latitude ionospheric model was developed by S. Quegan (Quegan, [1982]; Quegan et al., [1982]). The model of Earth’s mid- and low-latitude plasmasphere is based on the Bailey [1983] model. These first three components are described in more detail under the name of coupled thermosphere ionosphere plasmasphere (CTIP) by Millward et al., [1996]. The electrodynamic calculation was developed by Richmond et al., [1992] and was included in the CTIP model by Millward, [2001] resulting in the creation of CTIPe.

The Coupled Thermosphere Ionosphere Plasmasphere Electrodynamics (CTIPe) model runs are performed using real-time ACE measurements from the L1 point to infer the necessary inputs. Because the solar wind takes 30 – 40 minutes to propagate from L1 to the nose of the magnetosphere, the model results are displayed on the web page 20 – 30 minutes ahead of real-time. This is an average time as we do not take into account the current solar wind speed in its calculation. The F10.7 for the previous day averaged with the F10.7 average over the previous 41 days is used to drive the heating, dissociation, and ionization processes. One minute ACE data is used to generate the high-latitude electric potential patterns using the Weimer model and to infer the particle precipitation patterns using correlations between ACE data and the model of auroral precipitation patterns described by Fuller-Rowell and Evans [1987]. The input values (solar wind Btot in the YZ plane, solar wind velocity, IMF angle, solar wind density, and tilt) used for the Weimer model and to infer the particle precipitation pattern are obtained from the SWPC real-time development data base.

The latest model TEC input values are available from:  http://services.swpc.noaa.gov/experimental/text/ctipe-tec-input.txt

The latest model TEC output values are available from:  http://services.swpc.noaa.gov/experimental/text/ctipe-tec-output.txt

The file ctipe-tec-output.txt contains ascii values of Total Electron Content (TEC) as calculated by the Coupled Thermosphere Ionosphere Plasmasphere Electrodynamics (CTIPe) model.

This file is overwritten every 10 minutes with the latest model results available. Note that the date on the first line in the file may change even if no new inputs were available and no computations were performed since the last update.

The first line is a date in the format: month, day, year, hour, minute. The CTIPe run is generally ahead of real time by 10-20 minutes. This is because it uses ACE data for inputs and it takes the solar wind about 30 minutes from the time of measurement, to affect the ionosphere.

TEC values are listed as follows:

Latitude loop -90 to 90 increasing by 2 degrees each time (geographic coordinates).
(equator is 46)
This results in 91 blocks of 20 values each
Longitude loop 0 to 342 degrees increasing by 18 degrees (geographic coordinates).
This results in 20 TEC values for each latitude starting at the Zero degree Meridian.

Note that all 20 TEC values are the same at each pole.

For questions, please send Email to: Mihail.Codrescu@noaa.gov

 

Acknowledgement
swpc.noaa.gov

UTC?